Kabi Jagadram Roy Govt. General Degree College

Semester II

Vector Analysis 1

Biswajit/19/12/2019

Vector Function: Let P be a variable point on a curve in space and the position vector of P relative to a fixed origin O be \vec{r} . If there exists an independent scalar variable t such that corresponding to each value of t in a definite domain, we get a definite position of P, that is, a unique vector \vec{r} , then \vec{r} is called a single-valued vector function of the scalar variable t in that domain .It is usually denoted by $\vec{r} = \overline{f(t)}$.

 $\overrightarrow{f(c)}$ denotes the particular vector for some fixed value c of t.

If \vec{i} , \vec{j} , \vec{k} denote a fixed triad of mutually orthogonal unit vectors, then the vector function $\overrightarrow{f(t)}$ of the scalar parameter t can be decomposed to express if as in the form $\vec{r} = \overrightarrow{f(t)} = f_1(t) \ \vec{i} + f_2(t) \ \vec{j} + f_3(t) \ \vec{k}$ in which $f_1(t)$, $f_2(t)$, $f_3(t)$ are three scalar function of t.

The point P, whose Cartesian co-ordinates are (f_1, f_2, f_3) , describes a certain curve as t varies and hence the function \vec{f} represents a curve.

For example $\vec{r} = \overrightarrow{f(t)} = at \ \vec{i} + b(1-t) \ \vec{j}$ is the vector equation of the straight line $\frac{x}{a} + \frac{y}{b} = 1$, $\vec{r} = \overrightarrow{f(\alpha)} = a\cos\alpha \ \vec{i} + b\sin\alpha \ \vec{i} + 0 \ \vec{k}$, α being a scalar variable, is the vector equation of an ellipse with 2a and 2b as the major and minor axes respectively.

Limit and continuity of Vector function:

A vector function f(t) of the scalar parameter t is said to tend to a limit \vec{l} as t tends to t_0 , if corresponding to any pre-assigned positive quantity ε , however small, we can find out another positive quantity δ , such that $\left| \overrightarrow{f(t)} - \overrightarrow{l} \right| < \varepsilon$, when $0 < |t - t_0| < \delta$.

This is expressed by writing $\lim_{t \to t_0} \overrightarrow{f(t)} = \overrightarrow{l}$.

A vector function $\overrightarrow{f(t)}$ is said to be continuous at $t = t_0$, if $\lim_{t \to t_0} \overrightarrow{f(t)}$ exists, is finite and is equal to $\overrightarrow{f(t_0)}$

If $\overrightarrow{f(t)}$ be continuous for every value of t in a domain, then it is said to be continuous in that domain.

Derivative of a vector:

The derivative of a vector function $\vec{a} = \overrightarrow{f(t)}$ is denoted by

$$\overrightarrow{f'(t)} = \frac{d\overrightarrow{a}}{dt} = \lim_{\Delta t \to 0} \frac{\overrightarrow{f(t + \Delta t)} - \overrightarrow{f(t)}}{\Delta t}$$

When this limit exists, \vec{a} is said to be derivable or differentiable.

Space Curve:

If, in particular, $\overrightarrow{f(t)}$ be the position vector $\overrightarrow{r(t)}$ of any point (x, y, z) relative to a set of rectangular axes with the origin O, then we have $\overrightarrow{r(t)} = x(t) \overrightarrow{i} + y(t) \overrightarrow{i} + z(t) \overrightarrow{k}$.

As t changes, the terminal point \vec{r} describes a space curve, having parametric equations x = x(t), y = y(t), z = z(t).

Then
$$\frac{\Delta \vec{r}}{\Delta t} = \frac{\overrightarrow{r(t + \Delta t)} - \overrightarrow{r(t)}}{\Delta t}$$

is a vector in the direction of $\Delta \vec{r}$. If the limit of $\frac{\Delta \vec{r}}{\Delta t}$ exists as $\Delta t \rightarrow 0$ and is

equal to $\frac{d\vec{r}}{dt}$, then this limit will be a vector in the direction of the tangent to the space curve at (x, y, z) and will be given by

$$\frac{d\vec{r}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

Note: The derivative of a constant vector is the zero vector. If t denotes the time, $\frac{d\vec{r}}{dt}$ represents the velocity \vec{v} with which the terminal point of \vec{r}

describes the curve. Similarly, $\frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$ represents its acceleration \vec{a} along the curve.

Differentiation formulae:

If \vec{A} , \vec{B} and \vec{C} differentiable vector functions of a scalar u, and ϕ is a differentiable scalar function of u, then

1.
$$\frac{d}{du}(\vec{A} + \vec{B}) = \frac{d\vec{A}}{du} + \frac{d\vec{B}}{du}$$

2.
$$\frac{d}{du}(\vec{A}.\vec{B}) = \vec{A} \cdot \frac{d\vec{B}}{du} + \frac{d\vec{A}}{du} \cdot \vec{B}$$

3.
$$\frac{d}{du}(\vec{A} \times \vec{B}) = \vec{A} \times \frac{d\vec{B}}{du} + \frac{d\vec{A}}{du} \times \vec{B}$$

4.
$$\frac{d}{du}(\phi \vec{A}) = \phi \frac{d\vec{A}}{du} + \frac{d\phi}{du}\vec{A}$$

5.
$$\frac{d}{du}(\vec{A} \times \vec{B} \times \vec{C}) = \vec{A} \cdot \vec{B} \times \frac{d\vec{c}}{du} + \vec{A} \cdot \frac{d\vec{B}}{du} \times \vec{C} + \frac{d\vec{A}}{du} \cdot \vec{B} \times \vec{C}$$

6.
$$\frac{d}{du}\{\vec{A}\times(\vec{B}\times\vec{C})\} = \vec{A}\times(\vec{B}\times\frac{d\vec{c}}{du}) + \vec{A}\times(\frac{d\vec{B}}{du}\times\vec{C}) + \frac{d\vec{A}}{du}\times(\vec{B}\times\vec{C})$$

Theorem: If $\overrightarrow{F'(t)}$ exists at $t = t_0$, then $\overrightarrow{F(t)}$ is continuous at $t = t_0$

Proof: Let $\overrightarrow{F'(t)}$ exists at $t = t_0$. Then $\overrightarrow{F'(t_0)} = \lim_{\Delta t \to 0} \frac{\overrightarrow{F(t_0 + \Delta t)} - \overrightarrow{F(t_0)}}{\Delta t}$ exists

Now,
$$\lim_{\Delta t \to 0} \left[\overline{F(t_0 + \Delta t)} - \overline{F(t)} \right] = \lim_{\Delta t \to 0} \left[\Delta t \left\{ \frac{\overline{F(t_0 + \Delta t)} - \overline{F(t_0)}}{\Delta t} \right\} \right]$$

$$= \lim_{\Delta t \to 0} \left(\Delta t \right) \lim_{\Delta t \to 0} \left[\frac{\overline{F(t_0 + \Delta t)} - \overline{F(t_0)}}{\Delta t} \right]$$

$$= 0 \overline{F'(t_0)} = \vec{0}$$

Therefore, $\lim_{\Delta t \to 0} \overline{F(t_0 + \Delta t)} = \overline{F(t_0)}$ and this shows that $\overline{F(t)}$ is continuous at $t = t_0$.

Converse: The converse of the above theorem is not always true.

e.g., $\overrightarrow{F(t)} = |t| \hat{i}$, is continuous at t = 0 but not derivable there.

For,
$$\left| \overrightarrow{F(t)} - \overrightarrow{F(0)} \right| = \left| t | \overrightarrow{i} - \overrightarrow{0} \right| = \left| t \right|$$

whence, $\lim_{t\to 0} \overrightarrow{F(t)} = \overrightarrow{0} = \overrightarrow{F(0)}$.

So that $\overrightarrow{F(t)}$ is continuous at t = 0.

But
$$\frac{\overrightarrow{F(t)} - \overrightarrow{F(0)}}{t - 0} = \frac{|t|\overrightarrow{i}}{t}$$

So that the limit is i and -i according as t tends to zero through positive or through negative values. Hence $\overrightarrow{F'(0)}$ does not exist, since the limit is not unique.

Theorem: The necessary and sufficient condition for a vector function $\overrightarrow{f(t)}$ to be a constant is that $\frac{d}{dt}(\overrightarrow{f(t)}) = \overrightarrow{0}$

Proof: If $\overrightarrow{f(t)}$ be a constant vector, then for every change h of the scalar variable t, $\overrightarrow{f(t+h)} - \overrightarrow{f(t)} = \overrightarrow{0}$

Hence
$$\frac{d\vec{f}}{dt} = \lim_{h \to 0} \frac{\overrightarrow{f(t+h)} - \overrightarrow{f(t)}}{h} = \vec{0}$$

Thus the condition is necessary.

To prove that this condition is also sufficient, we assume that the derivatives of $\overline{f(t)}$ is zero vector.

Let us express $\overrightarrow{f(t)}$ as $\overrightarrow{f(t)} = f_1(t) \ \overrightarrow{i} + f_2(t) \ \overrightarrow{j} + f_3(t) \ \overrightarrow{k}$, in which $f_1(t), f_2(t), f_3(t)$ are three scalar functions of t.

Then
$$\frac{d\vec{f}}{dt} = \vec{0} = \frac{df_1}{dt} \vec{i} + \frac{df_2}{dt} \vec{j} + \frac{df_3}{dt} \vec{k}$$

This implies $\frac{df_1}{dt} = \frac{df_2}{dt} = \frac{df_3}{dt} = 0$ and hence the scalar functions $f_1(t)$, $f_2(t)$, $f_3(t)$ are constants. Hence f(t) is a constant vector.

Theorem: The necessary and sufficient condition for a vector function $\vec{r} = \overrightarrow{f(t)}$ to have a constant magnitude is that $\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$

Proof: Let $\vec{r} = \overrightarrow{f(t)}$ be a vector function of a scalar variable t.

Let $|\overrightarrow{f(t)}| = \text{constant.}$ Then $|\overrightarrow{f(t)}| \cdot |\overrightarrow{f(t)}| = |\overrightarrow{f(t)}|^2 = \text{constant.}$

$$\therefore \frac{d}{dt} \left(\overrightarrow{f(t)} \cdot \overrightarrow{f(t)} \right) = 0 \text{ or } \overrightarrow{f(t)} \cdot \frac{d}{dt} \left(\overrightarrow{f(t)} \right) + \frac{d}{dt} \left(\overrightarrow{f(t)} \right) \overrightarrow{f(t)} = 0$$

or
$$2\overrightarrow{f(t)} \cdot \frac{d}{dt} (\overrightarrow{f(t)}) = 0$$
 or $\overrightarrow{f(t)} \cdot \frac{d}{dt} (\overrightarrow{f(t)}) = 0$

Therefore, the condition is necessary.

To prove that this condition is also sufficient, let $\overline{f(t)}$ be a vector function such that the condition $\overrightarrow{f} \cdot \frac{d\overrightarrow{f}}{dt} = 0$ holds.

Then we have $2\vec{f} \cdot \frac{d\vec{f}}{dt} = 0$ or $\vec{f} \cdot \frac{d\vec{f}}{dt} + \frac{d\vec{f}}{dt} \cdot \vec{f} = 0$ or, $\frac{d}{dt} \left(\vec{f}(t) \cdot \vec{f}(t) \right) = 0$.

Therefore, $\left| \overrightarrow{f(t)} \right|^2 = \text{constant or, } \left| \overrightarrow{f(t)} \right| = \text{constant.}$

Note: If a vector function $\overrightarrow{f(t)}$ has a constant length, then $\overrightarrow{f(t)}$ and $\frac{d\overrightarrow{f}}{dt}$ are perpendicular.

Theorem : The necessary and sufficient condition for a vector $\vec{r} = \overrightarrow{f(t)}$ to have a constant direction is that $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{0}$

Proof: Let g(t) be the magnitude of $\overline{f(t)}$ and $\overline{F(t)}$ be a vector function in the direction of $\overline{f(t)}$ whose modulus is unity for all values of t, so that

$$\overrightarrow{f(t)} = g(t) \overrightarrow{F}$$
 and therefore $\frac{d\overrightarrow{f}}{dt} = g(t) \frac{d\overrightarrow{F}}{dt} + \frac{dg}{dt} \overrightarrow{F}$.

Thus we have, $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{f} \times (g \frac{d\vec{F}}{dt} + \frac{dg}{dt} \vec{F})$

$$= g \vec{F} \times (g \frac{d\vec{F}}{dt} + \frac{dg}{dt} \vec{F})$$

$$=g^2 \vec{F} \times \frac{d\vec{F}}{dt}$$
, since $\vec{F} \times \vec{F} = \vec{0}$ (1)

Now, if the direction of $\overline{f(t)}$ be constant, then \vec{F} is a constant vector. So we have $\frac{d\vec{F}}{dt} = \vec{0}$

Hence, from (1), in this case $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{0}$

Thus the condition is necessary.

To prove that this condition is also sufficient, we assume that $\vec{f} \times \frac{d\vec{f}}{dt} = \vec{0}$

Then, from (1), we have
$$g^2 \vec{F} \times \frac{d\vec{F}}{dt} = \vec{0}$$
(2)

Since g(t) is not always zero,

we have from (2),
$$\vec{F} \times \frac{d\vec{F}}{dt} = \vec{0}$$
(3)

Now, \vec{F} being the vector with unit (constant) modulus,

so, we have,
$$\vec{F} \cdot \frac{d\vec{F}}{dt} = 0$$
 (4)

From (3) and (4), we have
$$\frac{d\vec{F}}{dt} = \vec{0}$$

This implies that \vec{F} is a constant vector.

Hence f(t) has a constant direction.

Exercise1: If \hat{a} is a unit vector in the direction of the vector \vec{b} then show

that
$$\hat{a} \times \frac{d\hat{a}}{dt} = \frac{\left(\vec{b} \times \frac{d\vec{b}}{dt}\right)}{\vec{b}.\vec{b}}$$
.

 \odot . Since \hat{a} is a unit vector in the direction of the vector \vec{b} , therefore we have $\hat{a} = \frac{\vec{b}}{|\vec{b}|}$.

Now,
$$\frac{d\hat{a}}{dt} = \frac{1}{\left|\vec{b}\right|} \frac{d\vec{b}}{dt} - \frac{1}{\left|\vec{b}\right|^2} \frac{d\left|\vec{b}\right|}{dt} \vec{b}$$

$$\hat{a} \times \frac{d\hat{a}}{dt} = \left(\vec{b} \times \frac{d\vec{b}}{dt}\right) \frac{1}{\left|\vec{b}\right|^{2}} - \frac{1}{\left|\vec{b}\right|^{3}} \frac{d\left|\vec{b}\right|}{dt} \left(\vec{b} \times \vec{b}\right) = \frac{\left(\vec{b} \times \frac{d\vec{b}}{dt}\right)}{\vec{b}.\vec{b}} \text{, since } \left(\vec{b} \times \vec{b}\right) = \vec{0}.$$

Exercise2: If $\vec{\omega}$ is a constant vector, \vec{r} and \vec{s} are vector functions of a scalar variable t and if $\frac{d\vec{r}}{dt} = \vec{\omega} \times \vec{r}$, $\frac{d\vec{s}}{dt} = \vec{\omega} \times \vec{s}$ then show that $\frac{d}{dt}(\vec{r} \times \vec{s}) = \vec{\omega} \times (\vec{r} \times \vec{s})$

$$= (\vec{\omega}.\vec{s})\vec{r} - (\vec{r}.\vec{s})\vec{\omega} + (\vec{r}.\vec{s})\vec{\omega} - (\vec{r}.\vec{\omega})\vec{s} = (\vec{\omega}.\vec{s})\vec{r} - (\vec{\omega}.\vec{r})\vec{s} = \vec{\omega} \times (\vec{r} \times \vec{s})$$

Exercise3: A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$, where t is the time.

- (a) Determine its velocity and acceleration at any time.
- (b) Find the magnitudes of the velocity and acceleration at t = 0.
- \odot . (a) The position vector \vec{r} of the particle is

$$\vec{r} = x \vec{i} + y \vec{j} + z \vec{k} = e^{-t} \vec{i} + 2\cos 3t \vec{j} + 2\sin 3t \vec{k}$$

Then the velocity $\vec{v} = \frac{d\vec{r}}{dt} = -e^{-t} \vec{i} - 6\sin 3t \vec{j} + 6\cos 3t \vec{k}$ and the acceleration is

$$\vec{a} = \frac{d^2 \vec{r}}{dt^2} = e^{-t} \vec{i} - 18\cos 3t \vec{j} - 18\sin 3t \vec{k}$$

(b) At
$$t = 0$$
, $\frac{d\vec{r}}{dt} = -\vec{i} + 6\vec{k}$ and $\frac{d^2\vec{r}}{dt^2} = \vec{i} - 18\vec{j}$

Then the magnitude of velocity at t=0 is $\sqrt{(-1)^2 + 6^2} = \sqrt{37}$ magnitude of acceleration at t=0 is $\sqrt{(1)^2 + (-18)^2} = \sqrt{325}$

Exercise4: A particle moves along a curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where t is the time. Find the components of its velocity and acceleration at time t = 1 in the direction $\vec{i} - 3\vec{j} + 2\vec{k}$.

 \odot . The position vector \vec{r} of the particle is

$$\vec{r} = x \vec{i} + y \vec{j} + z \vec{k} = 2t^2 \vec{i} + (t^2 - 4t) \vec{j} + (3t - 5) \vec{k}$$

Then the velocity $\vec{v} = \frac{d\vec{r}}{dt} = 4t \vec{i} + (2t - 4) \vec{j} + 3\vec{k}$

and the acceleration is $\vec{a} = \frac{d^2 \vec{r}}{dt^2} = 4\vec{i} + 2\vec{j}$

At
$$t=1$$
, $\frac{d\vec{r}}{dt} = 4\vec{i} - 2\vec{j} + 3\vec{k}$, $\frac{d^2\vec{r}}{dt^2} = 4\vec{i} + 2\vec{j}$

Unit vector in the direction of \vec{i} -3 \vec{j} +2 \vec{k} is

$$\frac{\vec{i} - 3\vec{j} + 2\vec{k}}{\sqrt{1^2 + (-3)^2 + 2^2}} = \frac{\vec{i} - 3\vec{j} + 2\vec{k}}{\sqrt{14}}$$

Then the component of the velocity in the given direction is

$$\frac{\left(4\vec{i} - 2\vec{j} + 3\vec{k}\right) \cdot \left(\vec{i} - 3\vec{j} + 2\vec{k}\right)}{\sqrt{14}} = \frac{4 + 6 + 6}{\sqrt{14}} = \frac{16}{\sqrt{14}} = \frac{8\sqrt{14}}{7}$$

and the component of the acceleration in the given direction is

$$\frac{(4\vec{i}+2\vec{j}).(\vec{i}-3\vec{j}+2\vec{k})}{\sqrt{14}} = \frac{4-6}{\sqrt{14}} = \frac{-2}{\sqrt{14}} = \frac{-\sqrt{14}}{7}$$

Exercise5: A particle moves so that its position vector is given by $\vec{r} = \cos \omega t \ \vec{i} + \sin \omega t \ \vec{j}$ where ω is a constant. Show that

- (a) the velocity \vec{v} of the particle is perpendicular to \vec{r} .
- (b) the acceleration \vec{a} is directed towards to the origin and has magnitude proportional to the distance from the origin,
- (c) $\vec{r} \times \vec{v} = a$ constant vector.

Then $\vec{r} \cdot \vec{v} = (\cos \omega t \ \vec{i} + \sin \omega t \ \vec{j}) \cdot (-\omega \sin \omega t \ \vec{i} + \omega \cos \omega t \ \vec{j})$

$$=(\cos\omega t)(-\omega\sin\omega t)+(\sin\omega t)(\omega\cos\omega t)=0$$

Therefore, \vec{r} and \vec{v} are perpendicular.

(b)
$$\frac{d^2\vec{r}}{dt^2} = \frac{d\vec{v}}{dt} = -\omega^2 \cos \omega t \ \vec{i} - \omega^2 \sin \omega t \ \vec{j}$$
$$= -\omega^2 (\cos \omega t \ \vec{i} + \sin \omega t \ \vec{j}) = -\omega^2 \vec{r}$$

Then the acceleration is opposite to the direction of \vec{r} , i.e. it is directed toward the origin. Its magnitude is proportional to $|\vec{r}|$ which is the distance from the origin.

(c)
$$\vec{r} \times \vec{v} = (\cos \omega t \ \vec{i} + \sin \omega t \ \vec{j}) \times (-\omega \sin \omega t \ \vec{i} + \omega \cos \omega t \ \vec{j})$$

$$= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \cos wt & \sin wt & 0 \\ -w \sin wt & w \cos wt & 0 \end{vmatrix}$$

 $= w (\cos^2 \omega t + \sin^2 \omega t) \vec{k} = \omega \vec{k}$, a constant vector.

Note: Physically, the motion is that of a particle moving on the circumference of a circle with constant angular speed ω . The acceleration, directed toward the centre of the circle, is the centripetal acceleration.

Exercise6: If
$$\vec{\alpha} = t^2 \vec{i} - t \vec{j} + (2t+1) \vec{k}$$
 and $\vec{\beta} = (2t-3) \vec{i} + \vec{j} - t \vec{k}$, where \vec{i} , \vec{j} , \vec{k} have their usual meanings, then $\frac{d}{dt} (\vec{\alpha} \times \frac{d\vec{\beta}}{dt})$ at $t = 2$.

②. We have $\frac{d}{dt} (\vec{\alpha} \times \frac{d\vec{\beta}}{dt}) = \vec{\alpha} \times \frac{d^2 \vec{\beta}}{dt^2} + \frac{d\vec{\alpha}}{dt} \times \frac{d\vec{\beta}}{dt}$

Now $\vec{\alpha} = t^2 \vec{i} - t \vec{j} + (2t+1) \vec{k}$, $\frac{d\vec{\alpha}}{dt} = 2t \vec{i} - \vec{j} + 2\vec{k}$
 $\vec{\beta} = (2t-3) \vec{i} + \vec{j} - t \vec{k}$, $\frac{d\vec{\beta}}{dt} = 2\vec{i} - 2\vec{k}$, $\frac{d^2 \vec{\beta}}{dt^2} = \vec{0}$
 \therefore At $t = 2$, $\vec{\alpha} = 4\vec{i} - 2\vec{j} + 5\vec{k}$, $\frac{d\vec{\alpha}}{dt} = 4\vec{i} - \vec{j} + 2\vec{k}$
 $\vec{\beta} = \vec{i} + \vec{j} - 2\vec{k}$, $\frac{d\vec{\beta}}{dt} = 2\vec{i} - \vec{k}$, $\frac{d^2 \vec{\beta}}{dt^2} = \vec{0}$

$$\frac{d}{dt} (\vec{\alpha} \times \frac{d\vec{\beta}}{dt}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & -2 & 5 \\ 0 & 0 & 0 \end{vmatrix} + \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 0 & -1 \end{vmatrix} = \vec{i} + 8\vec{j} + 2\vec{k}$$
.